_
_
Ω
-7
α
N
0
Ω
-
٦
_
- 0
٥
}
×
}
×
. w w w//:
ttp://www.
. w w w//:

STUDY MODULE DESCRIPTION FORM					
Name of the module/subject (-)		Code 1010401161010410819			
Field of study EDUCATION IN TECHNOLOGY AND	Profile of study (general academic, practical) (brak)	Year /Semester 3 / 6			
Elective path/specialty	Subject offered in: Polish	Course (compulsory, elective) elective			
Cycle of study:	Form of study (full-time,part-time)				
First-cycle studies	ies full-time				
No. of hours Lecture: 2 Classes: - Laboratory: -	Project/seminars:	No. of credits			
Status of the course in the study program (Basic, major, other) (university-wide, from another field)					
(brak)		(brak)			
Education areas and fields of science and art		ECTS distribution (number and %)			
technical sciences		100 3%			
Responsible for subject / lecturer:	Responsible for subject	et / lecturer:			

dr inż. Marek Nowicki email: marek.nowicki@put.poznan.pl tel. 61 665-32-33, 61 665-3236 Wydział Fizyki Technicznej ul. Nieszawska 13A 60-965 Poznań prof. dr hab. Alina Dudkowiak. email: alina.dutkowia@put.poznan.pl tel. 061 665 31 81 Wydział Fizyki Technicznej Nieszawska 13 A, 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic knowledge of physics.
2	Skills	Ability to solve basic problems in physics and engineering on the basis of their knowledge, the ability to obtain information from the identified sources
3	Social competencies	Ability to work in a group, active in solving problems

Assumptions and objectives of the course:

The course is designed to acquaint students with physical methods used in modern medicine, and to provide knowledge about the structure of medical equipment used in the diagnosis and therapy.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Explain the structure and functions of the basic elements of X-ray and CT scans. [K_W02 K_W17]
- 2. Present and explain the use of nuclear physics for imaging and therapy of malignancies. [K_W02 K_W03]
- $3. \ Explain \ the \ concept \ of \ design \ and \ operation \ of \ nuclear \ magnetic \ resonance \ tomography. \ -\ [K_W02\ K_W03]$
- 4. Present optical law used in the construction of medical devices. [K_W02 K_W17]

Skills:

- 1. Can discuss in detail the process of X-ray and CT scan. Know the features and technical specifications and design X-ray and CT devices used in medicine. [K_U01 K_U02]
- 2. It can identify important for medical isotopes. Can discuss in detail the structure and function of: gamma camera, a particle accelerator, cobalt bomb and positron emission tomomografu computer. [K_U01 K_U20]
- 3. He can explain the phenomenon of nuclear magnetic resonance and electron paramagnetic resonance. He knows the details of the design of apparatus MR. Able to identify the most important medical applications of magnetic resonance. [K_U01 K_U20 K_U25]
- 4. Can discuss in detail the construction of optical devices used in medicine: optical microscopes, lasers, spectrometers. He can discuss their medical use [K_U01 K_U25]

Social competencies:

- 1. Actively engage in solving the questions posed. [K_K01 K_K02] $\,$
- 2. Is aware of the social role of technical college graduates, especially understands the need for formulating and providing the public with information and opinions on the achievements of physics used in medicine [K_K01 K_K09]

Assessment methods of study outcomes

Written test at the end of the lectures.

Course description

Fundamentals of optical and electron microscopy.

X-rays (generation, detection, interaction with matter).

Rentgenodiagnostics basic and contrast.

Computed tomography (CT principle, the reconstruction of images, examples of the use of X-ray tomography).

Natural and artificial radioactivity.

The use of radioisotopes for cancer therapy (brachytherapy, cobalt bomb).

Radionuclide diagnosis, characterization of radioisotopes.

Scintillation and semiconductor detectors.

Scyntygraf and gamma camera.

Examples scintigraphy selected organs (thyroid, circulatory system, digestive system).

Positron Annihilation.

Characteristics of positron sources used in medical diagnostics.

Fundamentals of positron emission tomography (PET).

Examples of the use of PET tomography.

Nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

Nuclear magnetic resonance tomography.

Ultrasonography (U.S.) (mechanical wave propagation in the centers of continuous Doppler effect, piezoelectric effect).

Laser and its applications in medicine.

Infrared thermography (thermal radiation and its detection).

Optical spectroscopy in medical diagnostics.

Absorption laws and their use in biological systems.

Photodynamic therapy and diagnostics.

Blood tests and biochemical methods.

Basic bibliography:

Additional bibliography:

Result of average student's workload

Activity	Time (working hours)
1. Participation in lectures	30
2. Indyvidual work, reading literature and scientific articles	20
3. Preparing to pass	15
4. Consultation	5

Student's workload

Source of workload	hours	ECTS		
Total workload	70	3		
Contact hours	35	2		
Practical activities	20	1		